Building a Data Lake on AWS

Build a simple Data Lake on AWS using a combination of services, including AWS Glue, AWS Glue Studio, Amazon Athena, and Amazon S3

Gary A. Stafford
2 min readNov 7, 2021

Introduction

In the following video demonstration, we will build a simple data lake on AWS using a combination of services, including AWS Glue Data Catalog, AWS Glue Crawlers, AWS Glue Jobs, AWS Glue Studio, Amazon Athena, Amazon Relational Database Service (Amazon RDS), and Amazon S3.

We will catalog and move data from three separate data sources into our Amazon S3-based data lake. Once in the data lake, we will perform ETL (or more accurately ELT) on the raw data — cleansing, augmenting, and preparing it for data analytics. Finally, we will perform aggregations on the refined data and write those final datasets back to our data lake. The data lake will be organized around the data lake pattern of bronze (aka raw), silver (aka refined), and gold (aka aggregated) data, popularized by Databricks.

Architecture and workflow demonstrated in the video

Demonstration

--

--

Gary A. Stafford
Gary A. Stafford

Written by Gary A. Stafford

Area Principal Solutions Architect @ AWS | 10x AWS Certified Pro | Polyglot Developer | DataOps | GenAI | Technology consultant, writer, and speaker

No responses yet