For anyone new to Amazon Managed Workflows for Apache Airflow (Amazon MWAA), especially those used to managing their own Apache Airflow platform, Amazon MWAA’s configuration might appear to be a bit of a black box at first. This brief post will explore Amazon MWAA’s configuration — how to inspect it and how to modify it. We will use Airflow DAGs to review an MWAA environment’s airflow.cfg
file, environment variables, and Python packages.
Apache Airflow is a popular open-source platform designed to schedule and monitor workflows. According to Wikipedia, Airflow was created at Airbnb in 2014 to manage the company’s increasingly…
In the first post of this series, we explored several ways to run PySpark applications on Amazon EMR using AWS services, including AWS CloudFormation, AWS Step Functions, and the AWS SDK for Python. This second post in the series will examine running Spark jobs on Amazon EMR using the recently announced Amazon Managed Workflows for Apache Airflow (Amazon MWAA) service.
According to AWS, Amazon Elastic MapReduce (Amazon EMR) is a Cloud-based big data platform for processing vast amounts of data using common open-source tools such as Apache Spark, Hive, HBase, Flink, Hudi, and Zeppelin, Jupyter, and Presto. Using Amazon EMR…
AWS provides nearly twenty-five different open-source data analytics applications that can be automatically installed and configured on Amazon Elastic MapReduce (Amazon EMR). Of all those options, EMR doesn’t offer a general-purpose data exploration and visualization tool. However, with EMR, you can automate the installation of additional software as part of the cluster creation process or post cluster creation. This brief post will explore how to install, configure, and access Apache Superset, the modern data exploration and visualization platform on Amazon EMR’s Master Node, as a post-cluster creation step. …
According to AWS, Amazon Elastic MapReduce (Amazon EMR) is a Cloud-based big data platform for processing vast amounts of data using common open-source tools such as Apache Spark, Hive, HBase, Flink, Hudi, and Zeppelin, Jupyter, and Presto. Using Amazon EMR, data analysts, engineers, and scientists are free to explore, process, and visualize data. EMR takes care of provisioning, configuring, and tuning the underlying compute clusters, allowing you to focus on running analytics.
Users interact with EMR in a variety of ways, depending on their specific requirements. For example, you might create a transient EMR cluster, execute a series of data…
In the following post, we will explore the integration of several open-source software applications to build an IoT edge analytics stack, designed to operate on ARM-based edge nodes. We will use the stack to collect, analyze, and visualize IoT data without first shipping the data to the Cloud or other external systems.
Edge computing is a fast-growing technology trend, which involves pushing compute capabilities to the edge. Wikipedia describes edge computing as a distributed computing paradigm that brings computation and data storage closer to the location needed to improve response times and save bandwidth. …
Enterprise software solutions often combine multiple technology platforms. Accessing an Oracle database via a Microsoft .NET application and vice-versa, accessing Microsoft SQL Server from a Java-based application is common. In this post, we will explore the use of the JDBC (Java Database Connectivity) API to call stored procedures from a Microsoft SQL Server 2017 database and return data to a Java 11-based console application.
The objectives of this post include:
Statement
, PreparedStatement
, and CallableStatement
.According to The Presto Foundation, Presto (aka PrestoDB), not to be confused with PrestoSQL, is an open-source, distributed, ANSI SQL compliant query engine. Presto is designed to run interactive ad-hoc analytic queries against data sources of all sizes ranging from gigabytes to petabytes. Presto is used in production at an immense scale by many well-known organizations, including Facebook, Twitter, Uber, Alibaba, Airbnb, Netflix, Pinterest, Atlassian, Nasdaq, and more.
In the following post, we will gain a better understanding of Presto’s ability to execute federated queries, which join multiple disparate data sources without having to move…
In a recent post published on ITNEXT, LoRa and LoRaWAN for IoT: Getting Started with LoRa and LoRaWAN Protocols for Low Power, Wide Area Networking of IoT, we explored the use of the LoRa (Long Range) and LoRaWAN protocols to transmit and receive sensor data, over a substantial distance, between an IoT device, containing several embedded sensors, and an IoT gateway. In this post, we will extend that architecture to the Cloud, using AWS IoT, a broad and deep set of IoT services, from the edge to the Cloud. …
According to the LoRa Alliance, Low-Power, Wide-Area Networks (LPWAN) are projected to support a major portion of the billions of devices forecasted for the Internet of Things (IoT). LoRaWAN is designed from the bottom up to optimize LPWANs for battery lifetime, capacity, range, and cost. LoRa and LoRaWAN permit long-range connectivity for the Internet of Things (IoT) devices in different types of industries. According to Wikipedia, LoRaWAN defines the communication protocol and system architecture for the network, while the LoRa physical layer enables the long-range communication link.
Long Range (LoRa), the low-power wide-area network (LPWAN) protocol…
According to Wikipedia, Bluetooth is a wireless technology standard used for exchanging data between fixed and mobile devices over short distances. Bluetooth Low Energy (Bluetooth LE or BLE) is a wireless personal area network (WPAN) technology designed and marketed by the Bluetooth Special Interest Group (Bluetooth SIG). According to the Bluetooth SIG, BLE is designed for very low power operation. BLE supports data rates from 125 Kb/s to 2 Mb/s, with multiple power levels from 1 milliwatt (mW) to 100 mW. Several key factors influence the effective range of a reliable Bluetooth connection, which can…
AWS Solutions Architect | AWS Certified Pro | Polyglot Developer | Data Analytics | DataOps | DevOps